17. Where removal of existing ductwork or portions of new ductwork is not feasible, refer to the architectural reflected ceiling plans for coordination purposes.

18. The contractor shall adjust and balance all new ductwork, using variable air volume systems where available. The contractor shall ensure that all ductwork is designed to provide the required airflow and pressure characteristics for the intended system performance.

19. The contractor shall provide all necessary ductwork and fittings to connect new equipment to existing ductwork. The contractor shall ensure that all connections are made properly and tightened to prevent leaks.

20. The contractor shall provide all necessary sheet metal for the fabrication of new ductwork. The contractor shall ensure that all sheet metal is cut, formed, and installed in accordance with the project specifications.

21. The contractor shall provide all necessary rigid and flexible ductwork for the installation of new equipment. The contractor shall ensure that all ductwork is designed to provide the required airflow and pressure characteristics for the intended system performance.

22. Refer to architectural reflected ceiling plans for coordination purposes

23. Duct routing changes made by the contractor for the installation of new equipment shall be designed to minimize interference with the use of space and ensure proper airflow. The contractor shall ensure that all routing changes are made properly and tightened to prevent leaks.

24. The contractor shall ensure that all new ductwork is insulated in accordance with the project specifications. The contractor shall provide all necessary insulation and ensure that it is installed properly.

25. Provide fire and combination fire/smoke dampers into the airstream.

26. The contractor shall ensure that all new ductwork is designed to provide the required airflow and pressure characteristics for the intended system performance.

27. The contractor shall ensure that all new ductwork is insulated in accordance with the project specifications. The contractor shall provide all necessary insulation and ensure that it is installed properly.

28. The contractor shall provide all necessary fasteners for the installation of new ductwork. The contractor shall ensure that all fasteners are properly installed to prevent leaks.

29. The owner shall have the option to designate any material for future owner use. The contractor shall ensure that all future owner use materials are properly marked and inventoried.

30. The owner shall have first right of refusal of any material for future owner use. The contractor shall ensure that all future owner use materials are properly marked and inventoried.

31. The contractor shall ensure that all new ductwork is designed to provide the required airflow and pressure characteristics for the intended system performance.

32. Except where required at equipment nozzles, flanges shall be provided by the contractor. The contractor shall ensure that all flanges are properly installed to prevent leaks.

33. The contractor shall ensure that all new ductwork is insulated in accordance with the project specifications. The contractor shall provide all necessary insulation and ensure that it is installed properly.

34. The contractor shall provide all necessary sheet metal for the fabrication of new ductwork. The contractor shall ensure that all sheet metal is cut, formed, and installed in accordance with the project specifications.

35. The contractor shall ensure that all new ductwork is designed to provide the required airflow and pressure characteristics for the intended system performance.

36. Provide capped drain valves at low points of piping to facilitate drainage and prevent water accumulation.

37. The contractor shall ensure that all new ductwork is insulated in accordance with the project specifications. The contractor shall provide all necessary insulation and ensure that it is installed properly.

38. The contractor shall provide all necessary fasteners for the installation of new ductwork. The contractor shall ensure that all fasteners are properly installed to prevent leaks.

39. The contractor shall ensure that all new ductwork is designed to provide the required airflow and pressure characteristics for the intended system performance.

40. The contractor shall ensure that all new ductwork is insulated in accordance with the project specifications. The contractor shall provide all necessary insulation and ensure that it is installed properly.

41. The contractor shall provide all necessary sheet metal for the fabrication of new ductwork. The contractor shall ensure that all sheet metal is cut, formed, and installed in accordance with the project specifications.

42. The contractor shall ensure that all new ductwork is designed to provide the required airflow and pressure characteristics for the intended system performance.

43. The contractor shall ensure that all new ductwork is insulated in accordance with the project specifications. The contractor shall provide all necessary insulation and ensure that it is installed properly.

44. The contractor shall provide all necessary fasteners for the installation of new ductwork. The contractor shall ensure that all fasteners are properly installed to prevent leaks.

45. The contractor shall ensure that all new ductwork is designed to provide the required airflow and pressure characteristics for the intended system performance.

46. The contractor shall ensure that all new ductwork is insulated in accordance with the project specifications. The contractor shall provide all necessary insulation and ensure that it is installed properly.

47. The contractor shall provide all necessary sheet metal for the fabrication of new ductwork. The contractor shall ensure that all sheet metal is cut, formed, and installed in accordance with the project specifications.

48. The contractor shall ensure that all new ductwork is designed to provide the required airflow and pressure characteristics for the intended system performance.

49. The contractor shall ensure that all new ductwork is insulated in accordance with the project specifications. The contractor shall provide all necessary insulation and ensure that it is installed properly.

50. The contractor shall provide all necessary fasteners for the installation of new ductwork. The contractor shall ensure that all fasteners are properly installed to prevent leaks.
1. INSTALL NEW SANITARY SEWER MAIN PARALLEL TO EXISTING INCLUDED IN ADD ALTERNATE #3.

2. CONNECT NEW SANITARY SEWER MAIN TO EXISTING SANITARY SEWER RISERS TO BE REPLACED IN KIND. MATCH EXISTING SIZE AND PROVIDE A DOUBLE CLEANOUT.

3. EXISTING SANITARY SEWER BRANCH PIPING FROM VERTICAL ENVELOPE. WHERE NO CLEANOUTS IS CURRENTLY PRESENT, PIPING IN BOTH SIZE AND ROUTING. BOTH NEW AND EXISTING SANITARY SEWER MAINS SHALL REMAIN FUNCTIONAL UNTIL NEW SANITARY SEWER MAIN. MATCH EXISTING SANITARY SEWER RISERS TO BE REPLACED IN KIND. MATCH EXISTING SIZE AND PROVIDE A DOUBLE CLEANOUT.

B. REFER TO SPECIFICATIONS FOR ADDITIONAL INFORMATION.

C. EXISTING SYSTEMS, DUCTWORK, PIPING, ETC. ARE RESPONSIBLE FOR FIELD VERIFYING EXACT SIZES AND LOCATIONS PRIOR TO COMMENCING WORK. CONTRACTOR SHALL NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND THAT PREVENT THE COMPLETION OF WORK INTENDED IN ADD ALTERNATE: FOUNDATION TRENCHES OR OTHER WORK DISRUPTIONS WITH OWNER.

DISRUPTIONS WITH OWNER.

THESE CONTRACT DOCUMENTS.

MEP2.00
MECHANICAL, ELECTRICAL & PLUMBING
RENOVATION
D22-2995.00
PROJECT NUMBER:
DALLAS, TX 75247
CAMPOS:
campos@camposengineering.com
1331 River Bend Drive
REGISTRATION NO. F-001731
(214) 696-6291
PROJECT ADDRESS:
1717 MAPLE STREET, DENTON, TX 76201
PROJECT TITLE:
CLARK HALL DORMITORY
PROJECT DIRECTORY:
MECHANICAL, ELECTRICAL & PLUMBING
JEFFREY STROH, P.E.
CAMPOS ENGINEERING
ISSUE DATE:
05/09/2023
DRAWN BY:
CHECKED BY:
APPROVED BY:
5/9/2023
2,032 sf
100% CONSTRUCTION DOCUMENTS
1. Rebalance all restroom exhaust grilles to 75 CFM each.
2. Rebalance exhaust grille to 75 CFM.
3. Rebalance exhaust grille to 200 CFM.

KEY NOTES

- Refer to symbol legend and general notes for additional information.
- Refer to specifications for additional information.
- Existing systems, ductwork, piping, etc. are approximate sizes and locations based on limited as-builds and field observations. Contractor is responsible for field verifying exact sizes and locations prior to commencing work. Contractor shall notify engineer of record if discrepancies are found that prevent the completion of work intended in these contract documents.

Sheet Notes

- Refer to electric and general notes for additional information.
- Water supply, demand, and general notes as follows:
 1. General notes and electrical water line.
 2. Water supply, drain, vent, and general notes.

Add Alternate:

All exhaust rebalancing and grille replacement indicated on this page shall be part of add alternate #6.
KEY NOTES

A. REFER TO SYMBOL LEGEND AND GENERAL NOTES FOR ADDITIONAL INFORMATION.
B. REFER TO SPECIFICATIONS FOR ADDITIONAL INFORMATION.
C. EXISTING SYSTEMS, DUCTWORK, PIPING, ETC. ARE APPROXIMATE SIZES AND LOCATIONS BASED ON LIMITED AS-BUILTS AND FIELD OBSERVATIONS. CONTRACTOR IS RESPONSIBLE FOR FIELD VERIFYING EXACT SIZES AND LOCATIONS PRIOR TO COMMENCING WORK. CONTRACTOR SHALL NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND THAT PREVENT THE COMPLETION OF WORK INTENDED IN THESE CONTRACT DOCUMENTS.

1. REBALANCE ALL RESTROOM EXHAUST GRILLES TO 75 CFM EACH.
2. REBALANCE EXHAUST GRILLE TO 75 CFM
3. REBALANCE EXHAUST GRILLE TO 200 CFM.
A. REFER TO SYMBOL LEGEND AND GENERAL NOTES FOR ADDITIONAL INFORMATION.
B. REFER TO SPECIFICATIONS FOR ADDITIONAL INFORMATION.
C. EXISTING SYSTEMS, DUCTWORK, PIPING, ETC. ARE APPROXIMATE SIZES AND LOCATIONS BASED ON LIMITED AS-BUILTS AND FIELD OBSERVATIONS. CONTRACTOR IS RESPONSIBLE FOR FIELD VERIFYING EXACT SIZES AND LOCATIONS PRIOR TO COMMENCING WORK. CONTRACTOR SHALL NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND THAT PREVENT THE COMPLETION OF WORK INTENDED IN THESE CONTRACT DOCUMENTS.

1. DEMOLISH EXISTING GRAVITY INTAKE HOOD AND ROOF CURB. DISCONNECT FROM EXISTING OUTSIDE AIR DUCT BELOW ROOF DECK. PROVIDE TEMPORARY COVERING ON DUCTWORK TO PROTECT FROM DEBRIS AND PREPARE FOR CONNECTION TO NEW EQUIPMENT.

2. ADD ALT #6: PROVIDE NEW ROOF MOUNTED SUPPLY FAN AND CURB. INSTALL IN SAME LOCATION AS PREVIOUS DEMOLISHED GRAVITY INTAKE HOOD. CONNECT SUPPLY FAN OUTLET TO EXISTING OUTSIDE AIR DUCTWORK.

3. ADD ALT #6: DEMOLISH EXISTING EXHAUST FAN AND PROVIDE NEW AS SCHEDULED. INSTALL NEW EXHAUST FAN ON EXISTING ROOF CURB. PROVIDE TRANSITION ROOF CURB, IF NECESSARY.

4. ADD ALT #6: DISCONNECT AND REMOVE EXISTING DISCONNECT SWITCH. PROVIDE NEW DISCONNECT SWITCH 30/20/3P/3R. CONNECT AND EXTEND EXISTING CIRCUIT TO NEW EXHAUST FAN.

5. ADD ALT #6: PROVIDE NEW DISCONNECT SWITCH 60/35/2P/3R WITH 2#8,#10G,3/4"C. HOMERUN TO EXISTING PANEL 3-E IN MECHANICAL ROOM AC/10 AND CONNECT TO CIRCUITS 31/33. PROVIDE NEW 35A/2P CIRCUIT BREAKER. NEW C/B SHALL MATCH THE AIC RATING OF THE PANEL. UPDATE PANEL DIRECTORY TYPEWRITTEN AND LABEL UNUSED EXISTING CIRCUIT BREAKERS AS SPARE.

6. ADD ALT #6: PROVIDE NEW DISCONNECT SWITCH 60/50/2P/3R WITH 2#6,#10G,1"C. HOMERUN TO EXISTING PANEL 3-E IN MECHANICAL ROOM AC/10 AND CONNECT TO CIRCUITS 35/37. PROVIDE NEW 50A/2P CIRCUIT BREAKER. NEW C/B SHALL MATCH THE AIC RATING OF THE PANEL. UPDATE PANEL DIRECTORY TYPEWRITTEN AND LABEL UNUSED EXISTING CIRCUIT BREAKERS AS SPARE.

7. ADD ALT #6: PROVIDE NEW DISCONNECT SWITCH 60/50/2P/3R WITH 2#6,#10G,1"C. HOMERUN TO EXISTING PANEL 3-A IN MECHANICAL ROOM AC/8 AND CONNECT TO CIRCUITS 36/38. PROVIDE NEW 50A/2P CIRCUIT BREAKER. NEW C/B SHALL MATCH THE AIC RATING OF THE PANEL. UPDATE PANEL DIRECTORY TYPEWRITTEN AND LABEL UNUSED EXISTING CIRCUIT BREAKERS AS SPARE.
REVISION SCHEDULE

1. DISCONNECT AND REMOVE EXISTING ELECTRICAL ITEMS FROM THE EXISTING PANEL '1-C' AND CONNECT TO CIRCUITS 30/32/34.
2. DISCONNECT AND REMOVE EXISTING ELECTRICAL ITEMS FROM THE EXISTING PANEL '1-E' AND CONNECT TO CIRCUITS 32/34/36.
3. DISCONNECT AND REMOVE EXISTING ELECTRICAL ITEMS FROM THE EXISTING PANEL '1-A' AND CONNECT TO CIRCUITS 30/30/3.
4. DISCONNECT AND REMOVE EXISTING ELECTRICAL ITEMS FROM THE EXISTING PANEL '1-C' AND CONNECT TO CIRCUITS 38/40/42.
5. NEW ZONE DAMPERS INSTALLED AND BALANCED TO SPECIFIED TYP. OF ZONE AIRFLOWS.
6. INSTALL NEW CHILLED WATER AND HOT WATER PIPING. ROUTE INSULATE AFFECTED CHILLED AND HOT WATER PIPING. PROVIDE CIRCUITS 2/4. PROVIDE NEW 20A/2P CIRCUIT BREAKER. PROVIDE HOMERUN TO EXISTING PANEL '1-C SECTION 2' AND CONNECT TO A103.
7. INSTALL NEW VARIABLE AIR VOLUME BOX FOR VENTILATION AIR FLOW DIRECTION INDICATORS AT HEADER TAKE-OFFS.
8. PROVIDE NEW 30A/3P CIRCUIT BREAKER AND MAKE FINAL CONNECTION. NEW C/B SHALL MATCH THE AIC RATING OF THE UNUSED EXISTING CIRCUIT BREAKERS AS "SPARE."
9. NEW CONDENSATE DRAIN LINE TO DISCHARGE AT EXISTING SUPPLY AIR FAN.
10. COORDINATE LOCATION OF CONTROL PANEL WITH CONTROLS.
11. PROVIDE NEW DISCONNECT SWITCH WITH 3#10,#10G,3/4"C. HOMERUN TO EXISTING PANEL '1-C' AND CONNECT TO TRIBUTARY CIRCUITS 2/4. PROVIDE NEW 20A CIRCUIT BREAKER. PROVIDE HOMERUN TO EXISTING PANEL '1-C SECTION 2' AND CONNECT TO SUB-FEED NEW PANEL FROM EXISTING PANEL '1-C'.
12. INSTALL NEW SERIES FAN POWERED VARIABLE AIR VOLUME BOX (E) 1-A 18"
13. PROVIDE NEW 100A 120/208V 42P FLUSH MOUNTED PANEL.
14. PROVIDE NEW 100A 120/208V 42P FLUSH MOUNTED PANEL. UPDATE PANEL DIRECTORY TYPEWRITTEN AND LABEL UNUSED EXISTING CIRCUIT BREAKERS AS "SPARE."
15. PROVIDE NEW DISCONNECT SWITCH WITH 3#10,#10G,3/4"C. HOMERUN TO EXISTING PANEL '1-C' AND CONNECT TO TRIBUTARY CIRCUITS 2/4. PROVIDE NEW 20A CIRCUIT BREAKER. PROVIDE HOMERUN TO EXISTING PANEL '1-C SECTION 2' AND CONNECT TO SUB-FEED NEW PANEL FROM EXISTING PANEL '1-C'.
16. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS.
17. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
18. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
19. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
20. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
21. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
22. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
23. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
24. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
25. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
26. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
27. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
28. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
29. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
30. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
31. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
32. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
33. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
34. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
35. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
36. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
37. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
38. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
39. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.
40. PROVIDE NEW TYPE WRITTEN CIRCUIT DIRECTORY FOR ALL THESE CONTRACT DOCUMENTS. NOTIFY ENGINEER OF RECORD IF DISCREPANCIES ARE FOUND.

PROJECT ADDRESS: 1717 MAPLE STREET, DENTON, TX 76201

PLOT STAMP: CAMPOS ENGINEERING

JEFFREY STROH, P.E.
AIR HANDLING UNIT AHU-5 FLOW DIAGRAM (TYPICAL AHU-5, 6, 7, 9 & 10)
SEQUENCE OF OPERATION

AIR HANDLING UNIT ASSOCIATED WITH VAV UNIT SEQUENCE OF OPERATION

1. STOP THE SUPPLY FAN
2. COMMAND CONDENSER WATER CONTROL VALVE TO 100% OPEN
3. COMMAND CONDENSER AIR CONTROL VALVE TO 100% OPEN
4. COMMAND VAV DAMPER TO 0% (CLOSED)
5. IF THE FREEZE STAT IN THE OA SYSTEM TRIPS, THE FANS SHALL BE CYCLED OFF AND THE HOT WATER VALVE WILL BE CLOSED.
6. IF SAFETY STATUS IS ACTIVE, THE UNIT WILL GO INTO FREEZE PROTECTION MODE. WHEN THE MIXED AIR TEMPERATURE RISES ABOVE 45 °F THE UNIT WILL RETURN SEQUENCE OF OPERATION AS ABOVE.

FREEZE PROTECTION MODE

1. STOP THE SUPPLY FAN
2. COMMAND CONDENSER WATER CONTROL VALVE TO 100% OPEN
3. COMMAND CONDENSER AIR CONTROL VALVE TO 100% OPEN
4. COMMAND VAV DAMPER TO 0% (CLOSED)
5. IF SAFETY STATUS IS ACTIVE, THE UNIT WILL GO INTO FREEZE PROTECTION MODE.

FREEZE PROTECTION MODE

1. STOP THE SUPPLY FAN
2. COMMAND CONDENSER WATER CONTROL VALVE TO 100% OPEN
3. COMMAND CONDENSER AIR CONTROL VALVE TO 100% OPEN
4. COMMAND VAV DAMPER TO 0% (CLOSED)
5. IF SAFETY STATUS IS ACTIVE, THE UNIT WILL GO INTO FREEZE PROTECTION MODE.

FREEZE PROTECTION MODE

1. STOP THE SUPPLY FAN
2. COMMAND CONDENSER WATER CONTROL VALVE TO 100% OPEN
3. COMMAND CONDENSER AIR CONTROL VALVE TO 100% OPEN
4. COMMAND VAV DAMPER TO 0% (CLOSED)
5. IF SAFETY STATUS IS ACTIVE, THE UNIT WILL GO INTO FREEZE PROTECTION MODE.

FREEZE PROTECTION MODE

1. STOP THE SUPPLY FAN
2. COMMAND CONDENSER WATER CONTROL VALVE TO 100% OPEN
3. COMMAND CONDENSER AIR CONTROL VALVE TO 100% OPEN
4. COMMAND VAV DAMPER TO 0% (CLOSED)
5. IF SAFETY STATUS IS ACTIVE, THE UNIT WILL GO INTO FREEZE PROTECTION MODE.

FREEZE PROTECTION MODE

1. STOP THE SUPPLY FAN
2. COMMAND CONDENSER WATER CONTROL VALVE TO 100% OPEN
3. COMMAND CONDENSER AIR CONTROL VALVE TO 100% OPEN
4. COMMAND VAV DAMPER TO 0% (CLOSED)
5. IF SAFETY STATUS IS ACTIVE, THE UNIT WILL GO INTO FREEZE PROTECTION MODE.

FREEZE PROTECTION MODE

1. STOP THE SUPPLY FAN
2. COMMAND CONDENSER WATER CONTROL VALVE TO 100% OPEN
3. COMMAND CONDENSER AIR CONTROL VALVE TO 100% OPEN
4. COMMAND VAV DAMPER TO 0% (CLOSED)
5. IF SAFETY STATUS IS ACTIVE, THE UNIT WILL GO INTO FREEZE PROTECTION MODE.

FREEZE PROTECTION MODE

1. STOP THE SUPPLY FAN
2. COMMAND CONDENSER WATER CONTROL VALVE TO 100% OPEN
3. COMMAND CONDENSER AIR CONTROL VALVE TO 100% OPEN
4. COMMAND VAV DAMPER TO 0% (CLOSED)
5. IF SAFETY STATUS IS ACTIVE, THE UNIT WILL GO INTO FREEZE PROTECTION MODE.

FREEZE PROTECTION MODE

1. STOP THE SUPPLY FAN
2. COMMAND CONDENSER WATER CONTROL VALVE TO 100% OPEN
3. COMMAND CONDENSER AIR CONTROL VALVE TO 100% OPEN
4. COMMAND VAV DAMPER TO 0% (CLOSED)
5. IF SAFETY STATUS IS ACTIVE, THE UNIT WILL GO INTO FREEZE PROTECTION MODE.

FREEZE PROTECTION MODE

1. STOP THE SUPPLY FAN
2. COMMAND CONDENSER WATER CONTROL VALVE TO 100% OPEN
3. COMMAND CONDENSER AIR CONTROL VALVE TO 100% OPEN
4. COMMAND VAV DAMPER TO 0% (CLOSED)
5. IF SAFETY STATUS IS ACTIVE, THE UNIT WILL GO INTO FREEZE PROTECTION MODE.

FREEZE PROTECTION MODE

1. STOP THE SUPPLY FAN
2. COMMAND CONDENSER WATER CONTROL VALVE TO 100% OPEN
3. COMMAND CONDENSER AIR CONTROL VALVE TO 100% OPEN
4. COMMAND VAV DAMPER TO 0% (CLOSED)
5. IF SAFETY STATUS IS ACTIVE, THE UNIT WILL GO INTO FREEZE PROTECTION MODE.